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39.1 Introduction

A simple and common parallel algorithm building block is the all-prefix-sums opera-
tion. In this chapter, we define and illustrate the operation, and we discuss in detail
its efficient implementation using NVIDIA CUDA. Blelloch (1990) describes all-pre-
fix-sums as a good example of a computation that seems inherently sequential, but
for which there is an efficient parallel algorithm. He defines the all-prefix-sums oper-
ation as follows:

The all-prefix-sums operation takes a binary associative operator  with
identity I, and an array of n elements

[a 0, a 1,..., a n–1],
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and returns the array

For example, if  is addition, then the all-prefix-sums operation on the array

[3 1 7 0 4 1 6 3]

would return

[0 3 4 11 11 15 16 22].

The all-prefix-sums operation on an array of data is commonly known as scan. We
use this simpler terminology (which comes from the APL programming language
[Iverson 1962]) for the remainder of this chapter. The scan just defined is an exclusive
scan, because each element j of the result is the sum of all elements up to but not in-
cluding j in the input array. In an inclusive scan, all elements including j are summed.
An exclusive scan can be generated from an inclusive scan by shifting the resulting
array right by one element and inserting the identity. Likewise, an inclusive scan can
be generated from an exclusive scan by shifting the resulting array left and inserting
at the end the sum of the last element of the scan and the last element of the input ar-
ray (Blelloch 1990). For the remainder of this chapter, we focus on the implementa-
tion of exclusive scan and refer to it simply as "scan" unless otherwise specified.

There are many uses for scan, including, but not limited to, sorting, lexical analysis,
string comparison, polynomial evaluation, stream compaction, and building his-
tograms and data structures (graphs, trees, and so on) in parallel. For example appli-
cations, we refer the reader to the survey by Blelloch (1990). In this chapter, we cover
summed-area tables (used for variable-width image filtering), stream compaction,
and radix sort.

In general, all-prefix-sums can be used to convert certain sequential computations
into equivalent, but parallel, computations, as shown in Figure 39-1.

Table 39-1. A Sequential Computation and Its Parallel Equivalent

39.1.1 Sequential Scan and Work Efficiency

Implementing a sequential version of scan (that could be run in a single thread on a
CPU, for example) is trivial. We simply loop over all the elements in the input array
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and add the value of the previous element of the input array to the sum computed for
the previous element of the output array, and write the sum to the current element of
the output array.

This code performs exactly n adds for an array of length n; this is the minimum num-
ber of adds required to produce the scanned array. When we develop our parallel
version of scan, we would like it to be work-efficient. A parallel computation is work-
efficient if it does asymptotically no more work (add operations, in this case) than the
sequential version. In other words the two implementations should have the same
work complexity, O(n).

39.2 Implementation

The sequential scan algorithm is poorly suited to GPUs because it does not take ad-
vantage of the GPU's data parallelism. We would like to find a parallel version of
scan that can utilize the parallel processors of a GPU to speed up its computation. In
this section we work through the CUDA implementation of a parallel scan algorithm.
We start by introducing a simple but inefficient implementation and then present im-
provements to both the algorithm and the implementation in CUDA.

39.2.1 A Naive Parallel Scan

The pseudocode in Algorithm 1 shows a first attempt at a parallel scan. This algo-
rithm is based on the scan algorithm presented by Hillis and Steele (1986) and
demonstrated for GPUs by Horn (2005). Figure 39-2 illustrates the operation. The
problem with Algorithm 1 is apparent if we examine its work complexity. The algo-
rithm performs O(n log2 n) addition operations. Remember that a sequential scan per-
forms O(n) adds. Therefore, this naive implementation is not work-efficient. The fac-
tor of log2 n can have a large effect on performance.
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Figure 39-2 The Naive Scan of

Example 1. A Sum Scan Algorithm That Is Not Work-Efficient

1: for d = 1 to log2 n do 
2:     for all k in parallel do 
3:          if k  2 d  then 
4:              x[k] = x[k – 2 d-1] + x[k]

Algorithm 1 assumes that there are as many processors as data elements. For large
arrays on a GPU running CUDA, this is not usually the case. Instead, the program-
mer must divide the computation among a number of thread blocks that each scans a
portion of the array on a single multiprocessor of the GPU. Even still, the number of
processors in a multiprocessor is typically much smaller than the number of threads
per block, so the hardware automatically partitions the "for all" statement into small
parallel batches (called warps) that are executed sequentially on the multiprocessor.
An NVIDIA 8 Series GPU executes warps of 32 threads in parallel. Because not all
threads run simultaneously for arrays larger than the warp size, Algorithm 1 will not
work, because it performs the scan in place on the array. The results of one warp will
be overwritten by threads in another warp.

To solve this problem, we need to double-buffer the array we are scanning using two
temporary arrays. Pseudocode for this is given in Algorithm 2, and CUDA C code for
the naive scan is given in Listing 39-1. Note that this code will run on only a single
thread block of the GPU, and so the size of the arrays it can process is limited (to 512
elements on NVIDIA 8 Series GPUs). Extension of scan to large arrays is discussed in
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Section 39.2.4.

Example 2. A Double-Buffered Version of the Sum Scan from Algorithm 1

1: for d = 1 to log2 n do 
2:     for all k in parallel do 
3:            if k  2 d  then 
4:                 x[out][k] = x[in][k – 2 d-1] + x[in][k]
5:            else 
6:                 x[out][k] = x[in][k]

Example 39-1. CUDA C Code for the Naive Scan Algorithm

This version can handle arrays only as large as can be processed by a single thread block run-
ning on one multiprocessor of a GPU.

39.2.2 A Work-Efficient Parallel Scan

Our implementation of scan from Section 39.2.1 would probably perform very badly
on large arrays due to its work-inefficiency. We would like to find an algorithm that
would approach the efficiency of the sequential algorithm, while still taking advan-
tage of the parallelism in the GPU. Our goal in this section is to develop a work-effi-
cient scan algorithm for CUDA that avoids the extra factor of log2 n work performed
by the naive algorithm. This algorithm is based on the one presented by Blelloch
(1990). To do this we will use an algorithmic pattern that arises often in parallel com-
puting: balanced trees. The idea is to build a balanced binary tree on the input data and
sweep it to and from the root to compute the prefix sum. A binary tree with n leaves
has d = log2 n levels, and each level d has 2 d nodes. If we perform one add per node,
then we will perform O(n) adds on a single traversal of the tree.

The tree we build is not an actual data structure, but a concept we use to determine
what each thread does at each step of the traversal. In this work-efficient scan algo-
rithm, we perform the operations in place on an array in shared memory. The algo-
rithm consists of two phases: the reduce phase (also known as the up-sweep phase) and
the down-sweep phase. In the reduce phase, we traverse the tree from leaves to root
computing partial sums at internal nodes of the tree, as shown in Figure 39-3. This is
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also known as a parallel reduction, because after this phase, the root node (the last
node in the array) holds the sum of all nodes in the array. Pseudocode for the reduce
phase is given in Algorithm 3.

Figure 39-3 An Illustration of the Up-Sweep, or Reduce, Phase of a Work-Efficient
Sum Scan Algorithm

Example 3. The Up-Sweep (Reduce) Phase of a Work-Efficient Sum Scan Algo-
rithm (After Blelloch 1990)

1: for d = 0 to log2 n – 1 do 

2:      for all k = 0 to n – 1 by 2 d+1 in parallel do 
3:           x[k +  2 d+1 – 1] = x[k +  2 d  – 1] + x[k +  2 d +1 – 1]

In the down-sweep phase, we traverse back down the tree from the root, using the
partial sums from the reduce phase to build the scan in place on the array. We start
by inserting zero at the root of the tree, and on each step, each node at the current lev-
el passes its own value to its left child, and the sum of its value and the former value
of its left child to its right child. The down-sweep is shown in Figure 39-4, and
pseudocode is given in Algorithm 4. CUDA C code for the complete algorithm is giv-
en in Listing 39-2. Like the naive scan code in Section 39.2.1, the code in Listing 39-2
will run on only a single thread block. Because it processes two elements per thread,
the maximum array size this code can scan is 1,024 elements on an NVIDIA 8 Series
GPU. Scans of larger arrays are discussed in Section 39.2.4.
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Figure 39-4 An Illustration of the Down-Sweep Phase of the Work-Efficient Parallel
Sum Scan Algorithm

Example 4. The Down-Sweep Phase of a Work-Efficient Parallel Sum Scan Algo-
rithm (After Blelloch 1990)

1: x[n – 1]  0
2: for d = log2 n – 1 down to 0 do 

3:       for all k = 0 to n – 1 by 2 d +1 in parallel do 
4:            t = x[k +  2 d  – 1]
5:            x[k +  2 d  – 1] = x[k +  2 d +1 – 1]
6:            x[k +  2 d +1 – 1] = t +  x[k +  2 d +1 – 1]

The scan algorithm in Algorithm 4 performs O(n) operations (it performs 2 x (n – 1)
adds and n – 1 swaps); therefore it is work-efficient and, for large arrays, should per-
form much better than the naive algorithm from the previous section. Algorithmic ef-
ficiency is not enough; we must also use the hardware efficiently. If we examine the
operation of this scan on a GPU running CUDA, we will find that it suffers from
many shared memory bank conflicts. These hurt the performance of every access to
shared memory and significantly affect overall performance. In the next section, we
look at some simple modifications we can make to the memory address computa-
tions to recover much of that lost performance.

Example 39-2. CUDA C Code for the Work-Efficient Sum Scan of Algorithms 3 and
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4.

39.2.3 Avoiding Bank Conflicts

The scan algorithm of the previous section performs approximately as much work as
an optimal sequential algorithm. Despite this work-efficiency, it is not yet efficient on
NVIDIA GPU hardware, due to its memory access patterns. As described in the
NVIDIA CUDA Programming Guide (NVIDIA 2007), the shared memory exploited by
this scan algorithm is made up of multiple banks. When multiple threads in the same
warp access the same bank, a bank conflict occurs unless all threads of the warp ac-
cess the same address within the same 32-bit word. The number of threads that ac-
cess a single bank is called the degree of the bank conflict. Bank conflicts cause serial-
ization of the multiple accesses to the memory bank, so that a shared memory access
with a degree-n bank conflict requires n times as many cycles to process as an access
with no conflict. On NVIDIA 8 Series GPUs, which execute 16 threads in parallel in a
halfwarp, the worst case is a degree-16 bank conflict.

Binary tree algorithms such as our work-efficient scan double the stride between
memory accesses at each level of the tree, simultaneously doubling the number of
threads that access the same bank. For deep trees, as we approach the middle levels
of the tree, the degree of the bank conflicts increases, and then it decreases again near
the root, where the number of active threads decreases (due to the if statement in
Listing 39-2). For example, if we are scanning a 512-element array, the shared memo-
ry reads and writes in the inner loops of Listing 39-2 experience up to 16-way bank
conflicts. This has a significant effect on performance.

Bank conflicts are avoidable in most CUDA computations if care is taken when ac-
cessing __shared__ memory arrays. We can avoid most bank conflicts in scan by
adding a variable amount of padding to each shared memory array index we com-
pute. Specifically, we add to the index the value of the index divided by the number
of shared memory banks. This is demonstrated in Figure 39-5. We start from the
work-efficient scan code in Listing 39-2, modifying only the highlighted blocks A
through E. To simplify the code changes, we define a macro CONFLICT_FREE_OFF‐
SET, shown in Listing 39-3.
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Figure 39-5 Simple Padding Applied to Shared Memory Addresses Can Eliminate
High-Degree Bank Conflicts During Tree-Based Algorithms Like Scan

Example 39-3. Macro Used for Computing Bank-Conflict-Free Shared Memory Ar-
ray Indices
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The blocks A through E in Listing 39-2 need to be modified using this macro to avoid
bank conflicts. Two changes must be made to block A. Each thread loads two array
elements from the __global__ array g_idata into the __shared__ array temp. In
the original code, each thread loads two adjacent elements, resulting in the inter-
leaved indexing of the shared memory array, incurring two-way bank conflicts. By
instead loading two elements from separate halves of the array, we avoid these bank
conflicts. Also, to avoid bank conflicts during the tree traversal, we need to add pad-
ding to the shared memory array every NUM_BANKS (16) elements. We do this using
the macro in Listing 39-3 as shown in Listing 39-4. Note that we store the offsets to
the shared memory indices so that we can use them again at the end of the scan,
when writing the results back to the output array g_odata in block E.

Example 39-4. Modifications to the Work-Efficient Scan Code to Avoid Shared
Memory Bank Conflicts

Block A:

Blocks B and D are identical:

Block C:

1. if (thid==0) { temp[n - 1 + CONFLICT_FREE_OFFSET(n - 1)] = 0;}  

Block E:

 

39.2.4 Arrays of Arbitrary Size

The algorithms given in the previous sections scan an array inside a single thread
block. This is fine for small arrays, up to twice the maximum number of threads in a
block (since each thread loads and processes two elements). On NVIDIA 8 Series
GPUs, this limits us to a maximum of 1,024 elements. Also, the array size must be a
power of two. In this section, we explain how to extend the algorithm to scan large
arrays of arbitrary (non-power-of-two) dimensions. This algorithm is based on the ex-
planation provided by Blelloch (1990).

The basic idea is simple. We divide the large array into blocks that each can be
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scanned by a single thread block, and then we scan the blocks and write the total sum
of each block to another array of block sums. We then scan the block sums, generat-
ing an array of block increments that that are added to all elements in their respective
blocks. In more detail, let N be the number of elements in the input array, and B be
the number of elements processed in a block. We allocate N/B thread blocks of B/2
threads each. (Here we assume that N is a multiple of B, and we extend to arbitrary
dimensions in the next paragraph.) A typical choice for B on NVIDIA 8 Series GPUs
is 128. We use the scan algorithm of the previous sections to scan each block i inde-
pendently, storing the resulting scans to sequential locations of the output array. We
make one minor modification to the scan algorithm. Before zeroing the last element
of block i (the block of code labeled B in Listing 39-2), we store the value (the total
sum of block i) to an auxiliary array SUMS. We then scan SUMS in the same manner,
writing the result to an array INCR. We then add INCR[i] to all elements of block i
using a simple uniform add kernel invoked on N/B thread blocks of B/2 threads
each. This is demonstrated in Figure 39-6. For details of the implementation, please
see the source code available at http://www.gpgpu.org/scan-gpugems3/.

Figure 39-6 Algorithm for Performing a Sum Scan on a Large Array of Values

Handling non-power-of-two dimensions is easy. We simply pad the array out to the
next multiple of the block size B. The scan algorithm is not dependent on elements
past the end of the array, so we don't have to use a special case for the last block.

http://www.gpgpu.org/scan-gpugems3/
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39.2.5 Further Optimization and Performance Results

After optimizing shared memory accesses, the main bottlenecks left in the scan code
are global memory latency and instruction overhead due to looping and address
computation instructions. To better cover the global memory access latency and im-
prove overall efficiency, we need to do more computation per thread. We employ a
technique suggested by David Lichterman, which processes eight elements per
thread instead of two by loading two float4 elements per thread rather than two
float elements (Lichterman 2007). Each thread performs a sequential scan of each
float4, stores the first three elements of each scan in registers, and inserts the total
sum into the shared memory array. With the partial sums from all threads in shared
memory, we perform an identical tree-based scan to the one given in Listing 39-2.
Each thread then constructs two float4 values by adding the corresponding
scanned element from shared memory to each of the partial sums stored in registers.
Finally, the float4 values are written to global memory. This approach, which is
more than twice as fast as the code given previously, is a consequence of Brent's The-
orem and is a common technique for improving the efficiency of parallel algorithms
(Quinn 1994).

To reduce bookkeeping and loop instruction overhead, we unroll the loops in Algo-
rithms 3 and 4. Because our block size is fixed, we can completely unroll these loops,
greatly reducing the extra instructions required to traverse the tree in a loop.

Our efforts to create an efficient scan implementation in CUDA have paid off. Perfor-
mance is up to 20 times faster than a sequential version of scan running on a fast
CPU, as shown in the graph in Figure 39-7. Also, thanks to the advantages provided
by CUDA, we outperform an optimized OpenGL implementation running on the
same GPU by up to a factor of seven. The graph also shows the performance we
achieve when we use the naive scan implementation from Section 39.2.1 for each
block. Because both the naive scan and the work-efficient scan must be divided
across blocks of the same number of threads, the performance of the naive scan is
slower by a factor of O(log2 B), where B is the block size, rather than a factor of
O(log2 n). Figure 39-8 compares the performance of our best CUDA implementation
with versions lacking bankconflict avoidance and loop unrolling.
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Figure 39-7 Performance of the Work-Efficient, Bank-Conflict-Free Scan Implemented
in CUDA Compared to a Sequential Scan Implemented in C++, and a Work-Efficient
Implementation in OpenGL

Figure 39-8 Comparison of Performance of the Work-Efficient Scan Implemented in
CUDA with Optimizations to Avoid Bank Conflicts and to Unroll Loops

The scan implementation discussed in this chapter, along with example applications,
is available online at http://www.gpgpu.org/scan-gpugems3/.

39.2.6 The Advantages of CUDA over the OpenGL Implementation

Prior to the introduction of CUDA, several researchers implemented scan using
graphics APIs such as OpenGL and Direct3D (see Section 39.3.4 for more). To demon-
strate the advantages CUDA has over these APIs for computations like scan, in this

http://www.gpgpu.org/scan-gpugems3/
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section we briefly describe the work-efficient OpenGL inclusive-scan implementation
of Sengupta et al. (2006). Their implementation is a hybrid algorithm that performs a
configurable number of reduce steps as shown in Algorithm 5. It then runs the dou-
ble-buffered version of the sum scan algorithm previously shown in Algorithm 2 on
the result of the reduce step. Finally it performs the down-sweep as shown in Algo-
rithm 6.

Example 5. The Reduce Step of the OpenGL Scan Algorithm

1: for d = 1 to log2 n do 

2:     for all k = 1 to n/2 d  – 1 in parallel do 
3:          a[d][k] = a[d – 1][2k] + a[d – 1][2k + 1]]

Example 6. The Down-Sweep Step of the OpenGL Scan Algorithm

1: for d = log2 n – 1 down to 0 do 

2:     for all k = 0 to n/2 d  – 1 in parallel do 
3:          if i > 0 then 
4:             if k mod 2  0 then 
5:                  a[d][k] = a[d + 1][k/2]
6:             else 
7:                  a[d][i] = a[d + 1][k/2 – 1]

The OpenGL scan computation is implemented using pixel shaders, and each a[d]
array is a two-dimensional texture on the GPU. Writing to these arrays is performed
using render-to-texture in OpenGL. Thus, each loop iteration in Algorithm 5 and Al-
gorithm 2 requires reading from one texture and writing to another.

The main advantages CUDA has over OpenGL are its on-chip shared memory,
thread synchronization functionality, and scatter writes to memory, which are not ex-
posed to OpenGL pixel shaders. CUDA divides the work of a large scan into many
blocks, and each block is processed entirely on-chip by a single multiprocessor before
any data is written to off-chip memory. In OpenGL, all memory updates are off-chip
memory updates. Thus, the bandwidth used by the OpenGL implementation is much
higher and therefore performance is lower, as shown previously in Figure 39-7.

39.3 Applications of Scan
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As we described in the introduction, scan has a wide variety of applications. In this
section, we cover three applications of scan: stream compaction, summed-area tables,
and radix sort.

39.3.1 Stream Compaction

Stream compaction is an important primitive in a variety of general-purpose applica-
tions, including collision detection and sparse matrix compression. In fact, stream
compaction was the focus of most of the previous GPU work on scan (see Section
39.3.4). Stream compaction is the primary method for transforming a heterogeneous
vector, with elements of many types, into homogeneous vectors, in which each ele-
ment has the same type. This is particularly useful with vectors that have some ele-
ments that are interesting and many elements that are not interesting. Stream com-
paction produces a smaller vector with only interesting elements. With this smaller
vector, computation is more efficient, because we compute on only interesting ele-
ments, and thus transfer costs, particularly between the GPU and CPU, are potential-
ly greatly reduced.

Informally, stream compaction is a filtering operation: from an input vector, it selects
a subset of this vector and packs that subset into a dense output vector. Figure 39-9
shows an example. More formally, stream compaction takes an input vector vi and a
predicate p, and outputs only those elements in vi for which p(vi ) is true, preserving
the ordering of the input elements. Horn (2005) describes this operation in detail.

Figure 39-9 Stream Compaction Example

Stream compaction requires two steps, a scan and a scatter.

1. The first step generates a temporary vector where the elements that pass the
predicate are set to 1 and the other elements are set to 0. We then scan this tem-
porary vector. For each element that passes the predicate, the result of the scan
now contains the destination address for that element in the output vector.

2. The second step scatters the input elements to the output vector using the ad-
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dresses generated by the scan.

Figure 39-10 shows this process in detail.

Figure 39-10 Scan and Scatter

The GPUs on which Horn implemented stream compaction in 2005 did not have scat-
ter capability, so Horn instead substituted a sequence of gather steps to emulate scat-
ter. To compact n elements required log n gather steps, and while these steps could
be implemented in one fragment program, this "gather-search" operation was fairly
expensive and required more memory operations. The addition of a native scatter in
recent GPUs makes stream compaction considerably more efficient. Performance of
our stream compaction test is shown in Figure 39-11.

Figure 39-11 Performance of Stream Compaction Implemented in CUDA on an
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NVIDIA GeForce 8800 GTX GPU

39.3.2 Summed-Area Tables

A summed-area table (SAT) is a two-dimensional table generated from an input im-
age in which each entry in the table stores the sum of all pixels between the entry lo-
cation and the lower-left corner of the input image. Summed-area tables were intro-
duced by Crow (1984), who showed how they can be used to perform arbitrary-
width box filters on the input image. The power of the summed-area table comes
from the fact that it can be used to perform filters of different widths at every pixel in
the image in constant time per pixel. Hensley et al. (2005) demonstrated the use of
fast GPU-generated summed-area tables for interactive rendering of glossy environ-
ment reflections and refractions. Their implementation on GPUs used a scan opera-
tion equivalent to the naive implementation in Section 39.2.1. A work-efficient imple-
mentation in CUDA allows us to achieve higher performance. In this section we de-
scribe how summed-area tables can be computed using scans in CUDA, and we
demonstrate their use in rendering approximate depth of field.

To compute the summed-area table for a two-dimensional image, we simply apply a
sum scan to all rows of the image followed by a sum scan of all columns of the result.
To do this efficiently in CUDA, we extend our basic implementation of scan to per-
form many independent scans in parallel. Thanks to the "grid of thread blocks" se-
mantics provided by CUDA, this is easy; we use a two-dimensional grid of thread
blocks, scanning one row of the image with each row of the grid. Modifying scan to
support this requires modifying only the computation of the global memory indices
from which the data to be scanned in each block are read. Extending scan to also sup-
port scanning columns would lead to poor performance, because column scans
would require large strides through memory between threads, resulting in noncoa-
lesced memory reads (NVIDIA 2007). Instead, we simply transpose the image after
scanning the rows, and then scan the rows of the transposed image.

Generating a box-filtered pixel using a summed-area table requires sampling the
summed-area table at the four corners of a rectangular filter region, sur , sul , sll , slr .
The filtered result is then

where w and h are the width and height of the filter
kernel, and sur is the upper-right corner sample, sll is
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the lower-left corner sample, and so on (Crow 1977). We can use this technique for
variable-width filtering, by varying the locations of the four samples we use to com-
pute each filtered output pixel.

Figure 39-12 shows a simple scene rendered with approximate depth of field, so that
objects far from the focal length are blurry, while objects at the focal length are in fo-
cus. In the first pass, we render the teapots and generate a summed-area table in
CUDA from the rendered image using the technique just described. In the second
pass, we render a full-screen quad with a shader that samples the depth buffer from
the first pass and uses the depth to compute a blur factor that modulates the width of
the filter kernel. This determines the locations of the four samples taken from the
summed-area table at each pixel.

Figure 39-12 Approximate Depth of Field Rendered by Using a Summed-Area Table
to Apply a Variable-Size Blur to the Image Based on the Depth of Each Pixel

Rather than write a custom scan algorithm to process RGB images, we decided to use
our existing code along with a few additional simple kernels. Computing the SAT of
an RGB8 input image requires four steps. First we de-interleave the RGB8 image into
three separate floating-point arrays (one for each color channel). Next we scan all
rows of each array in parallel. Then the arrays must be transposed and all rows
scanned again (to scan the columns). This is a total of six scans of width x height ele-
ments each. Finally, the three individual summed-area tables are interleaved into the
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RGB channels of a 32-bit floating-point RGBA image. Note that we don't need to
transpose the image again, because we can simply transpose the coordinates we use
to look up into it. Table 39-1 shows the time spent on each of these computations for
two image sizes.

Table 39-1. Performance of Our Summed-Area Table Implementation on an
NVIDIA GeForce 8800 GTX GPU for Two Different Image Sizes

Resolution (De)interleave (ms) Transpose (ms) 6 Scans (ms) Total (ms)
512x512 0.44 0.23 0.97 1.64
1024x1024 0.96 0.84 1.70 3.50

39.3.3 Radix Sort

Previous GPU-based sorting routines have primarily used variants of bitonic sort
(Govindaraju et al. 2006, Greß and Zachmann 2006), an efficient, oblivious sorting al-
gorithm for parallel processors. The scan primitive can be used as a building block
for another efficient sorting algorithm on the GPU, radix sort.

Our implementation first uses radix sort to sort individual chunks of the input array.
Chunks are sorted in parallel by multiple thread blocks. Chunks are as large as can fit
into the shared memory of a single multiprocessor on the GPU. After sorting the
chunks, we use a parallel bitonic merge to combine pairs of chunks into one. This
merge is repeated until a single sorted array is produced.

Step 1: Radix Sort Chunks

Radix sort is particularly well suited for small sort keys, such as small integers, that
can be expressed with a small number of bits. At a high level, radix sort works as fol-
lows. We begin by considering one bit from each key, starting with the least-signifi-
cant bit. Using this bit, we partition the keys so that all keys with a 0 in that bit are
placed before all keys with a 1 in that bit, otherwise keeping the keys in their original
order. See Figure 39-13. We then move to the next least-significant bit and repeat the
process.

Figure 39-13 Radix Sort

Thus for k-bit keys, radix sort requires k steps. Our implementation requires one scan
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per step.

The fundamental primitive we use to implement
each step of radix sort is the split primitive. The
input to split is a list of sort keys and their bit val-

ue b of interest on this step, either a true or false. The output is a new list of sort keys,
with all false sort keys packed before all true sort keys.

We implement split on the GPU in the following way, as shown in Figure 39-14.

Figure 39-14 The Operation Requires a Single Scan and Runs in Linear Time with the
Number of Input Elements

1. In a temporary buffer in shared memory, we set a 1 for all false sort keys (b =
0) and a 0 for all true sort keys.

2. We then scan this buffer. This is the enumerate operation; each false sort key
now contains its destination address in the scan output, which we will call f.
These first two steps are equivalent to a stream compaction operation on all false
sort keys.
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3. The last element in the scan's output now contains the total number of false sort
keys. [1] We write this value to a shared variable, totalFalses.

4. Now we compute the destination address for the true sort keys. For a sort key at
index i, this address is t = i - f + totalFalses. We then select between
t and f depending on the value of b to get the destination address d of each
fragment.

5. Finally, we scatter the original sort keys to destination address d. The scatter
pattern is a perfect permutation of the input, so we see no write conflicts with
this scatter.

With split, we can easily implement radix sort. We begin by loading a block-size
chunk of input from global memory into shared memory. We then initialize our cur-
rent bit to the least-significant bit of the key, split based on the key, check if the out-
put is sorted, and if not shift the current bit left by one and iterate again. When we
are done, we copy the sorted data back to global memory. With large inputs, each
chunk is mapped to a thread block and runs in parallel with the other chunks.

Step 2: Merge Sorted Chunks

After each block-size chunk is sorted, we use a recursive merge sort to combine two
sorted chunks into one sorted chunk. If we have b sorted chunks of size n, we require
log2 b steps of merge to get one final sorted output at the end. On the first step, we
perform b/2 merges in parallel, each on two n-element sorted streams of input and
producing 2n sorted elements of output. On the next step, we do b/4 merges in paral-
lel, each on two 2n-element sorted streams of input and producing 4n sorted ele-
ments of output, and so on.

Our merge kernel must therefore operate on two inputs of arbitrary length located in
GPU main memory. At a high level, our implementation keeps two buffers in shared
memory, one for each input, and uses a parallel bitonic sort to merge the smallest ele-
ments from each buffer. It then refills the buffers from main memory if necessary,
and repeats until both inputs are exhausted. All reads from global memory into
shared memory and all writes to global memory are coherent and blocked; we also
guarantee that each input element is read only once from global memory and each
output element is written only once.

In our merge kernel, we run p threads in parallel. The most interesting part of our im-
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plementation is the computation and sorting of the p smallest elements from two sort-
ed sequences in the input buffers. Figure 39-15 shows this process. For p elements, the
output of the pairwise parallel comparison between the two sorted sequences is
bitonic and can thus be efficiently sorted with log2 p parallel operations.

Figure 39-15 Merging Two Sorted Subsequences into
One Sorted Sequence Is an Efficient Operation

39.3.4 Previous Work

Scan was first proposed in the mid-1950s by Iverson
as part of the APL programming language (Iverson
1962). Blelloch was one of the primary researchers to
develop efficient algorithms using the scan primi-
tive (Blelloch 1990), including the scan-based radix
sort described in this chapter (Blelloch 1989).

On the GPU, the first published scan work was
Horn's 2005 implementation (Horn 2005). Horn's

scan was used as a building block for a nonuniform stream compaction operation,
which was then used in a collision-detection application. Horn's scan implementation
had O(n log n) work complexity. Hensley et al. (2005) used scan for summed-area-ta-
ble generation later that year, improving the overall efficiency of Horn's implementa-
tion by pruning unnecessary work. Like Horn's, however, the overall work complexi-
ty of Hensley et al.'s technique was also O(n log n).

The first published O(n) implementation of scan on the GPU was that of Sengupta et
al. (2006), also used for stream compaction. They showed that a hybrid work-efficient
(O(n) operations with 2n steps) and step-efficient (O(n log n) operations with n steps)
implementation had the best performance on GPUs such as NVIDIA's GeForce 7 Se-
ries. Sengupta et al.'s implementation was used in a hierarchical shadow map algo-
rithm to compact a stream of shadow pages, some of which required refinement and
some of which did not, into a stream of only the shadow pages that required refine-
ment. Later that year, Greß et al. (2006) also presented an O(n) scan implementation
for stream compaction in the context of a GPU-based collision detection application.
Unlike previous GPU-based 1D scan implementations, Greß et al.'s application re-
quired a 2D stream reduction, which resulted in fewer steps overall. Greß et al. also
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used their scan implementation for stream compaction, in this case computing a
stream of valid overlapping pairs of colliding elements from a larger stream of poten-
tially overlapping pairs of colliding elements.

39.4 Conclusion

The scan operation is a simple and powerful parallel primitive with a broad range of
applications. In this chapter we have explained an efficient implementation of scan
using CUDA, which achieves a significant speedup compared to a sequential imple-
mentation on a fast CPU, and compared to a parallel implementation in OpenGL on
the same GPU. Due to the increasing power of commodity parallel processors such as
GPUs, we expect to see data-parallel algorithms such as scan to increase in impor-
tance over the coming years.
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